Unit Title: Ecology-Cycles of Matt	er	Content Area: Biology	Grade Level: 9-12					
Unit Summary: This unit focuses	on student understanding the move	ment of matter and nutrients in the e	ecosystem and the role that photosy	nthesis and cellular respiration play	in the movement of nutrients and			
energy among living things.								
Cross Cutting Concepts: Energy a	nd Matter, System and System Mod	dels, Patterns	Data Obtaining Evaluating and Oa		in Annual and frame Evidence			
Science and Engineering Practices: Planning and Carrying Out Investigations, Analyzing and Interpreting Data, Obtaining, Evaluating and Communicating Information, Engaging in Argument from Evidence,								
Asking Questions and Delining Pr	Asking Questions and Defining Problems, Constructing Explanations and Designing Solutions							
Unit Essential Questions: Unit Enduring Understandings:								
 How does the sun contribute to the process of Photosynthesis and life on earth? Plants have the capability to take continual energy from sun light to form sugar molecules containing parts and every parts of an environment exertisities of metter? 								
 How do the living and hom What are the processor of 	f Photosynthesis and Collular Possi	ration and how do both processos	All organisms must break	the high-energy chemical bonds in f	ood molecules during cellular			
 What are the processes of cycle energy and nutrients 	in an environment	ration and now do both processes	respiration to obtain the er	herav needed for life processes	ood molecules during celidial			
by the energy and national			As matter cycles and ener	av flows through different levels of a	rganization within living systems			
			(cells, organs, organisms,	communities), and between living sy	stems and the physical			
	environment, chemical elements are recombined into different products.							
Possible Student Misconceptions: Students may find difficult the concept that natural processes occur automatically when materials and conditions are right. Students may have difficulty tracking the direction								
of molecules into and out of the light dependent reaction and Calvin Cycle. Students may find it difficult to understand the concept of 38 ATP production versus 36 ATP yield from Cellular Respiration.								
NJCCCS: 5.3.12.B.4, 5.3.12.B.5, 5.3.12.B.6								
NGSS Performance Expectation	s: Students who demonstrate unde	rstanding can						
 HS-LS2-3. Construct and 	revise an explanation based on evic	dence for the cycling of matter and flo	ow of energy in aerobic and anaerol	bic conditions.	_			
HS-LS2-5. Develop a mod	lel to illustrate the role of photosynth	nesis and cellular respiration in the c	ycling of carbon among the biosphe	ere, atmosphere, hydrosphere, and g	eosphere.			
HS-LS1-5. Use a model to	illustrate how photosynthesis trans	forms light energy into stored chemi	cal energy.					
HS-LS1-6. Construct and I	revise an explanation based on evic	dence for how carbon, hydrogen, and	d oxygen from sugar molecules may	combine with other elements to form	m amino acids and/or other large			
carbon-based molecules.	illustrate that callular respiration is	a chamical process whereby the bar	do of food molecules and evurgen a	nolocular are broken and the bands	in new compounds are formed			
 HS-LS1-7. Use a model to resulting in a net transfer of 	of energy	a chemical process whereby the bol	ius of food molecules and oxygen n	noiecules are broken and the bolids	in new compounds are formed			
Primary CCSS FL A/Literacy Cor	nections: RST 11-12 7 RST 11-1	2.8 WHST 9 12-2 WHST 9 12-5	Primary CCSS Mathematics Con	nections: CCSS MATH CONTENT	HSN Q A 2			
WHST.9.12-7. CCSS.ELA-LITERA	CY.RI.9-10.1. CCSS.ELA-LITERA	CY.RI.9-10.2. CCSS.ELA-						
LITERACY.RI.9-10.4, CCSS.ELA-	LITERACY.RI.9-10.10							
		Lesson Pace	& Sequence					
Lesson Title/Number: Cycles of I	Vatter	Learning Objective(s): All learner	s will be able to describe the cycles	of matter	Lesson Duration: 80 minutes			
Learning Cycle	Learning Activities	Resources/Materials	Science and Engineering	Disciplinary Core Ideas	Crosscutting Concepts			
····			Practices					
What lesson elements will	What specific learning	What curricular		What core ideas do students	What crosscutting concepts			
support students' progress	experiences will support ALL	resources/materials are	What specific practices do	need to understand in order to	Will enrich students'			
lowards mastery of the	students progress towards	students' progress towards available to facilitate the students need to use in order progress towards mastery of a						
learning objectives(s)?	objective(s)?	activities?	of the learning objective(s)?		ideas?			
*Elements do not have to be in	00)00110(3).	uolivilies.			10003.			
conducted in sequence.								
Elicit: How will you access	What is a cycle?							
tudents' prior knowledge?								

Engage: How will you capture students' interest and get students' minds focused on	Why would it be important for things to cycle/recycle in an ecosystem?				
the concept/topic? Explore: What hands- on/minds-on common experience(s) will you provide for students?	Cycles JIG SAW: Students are broken into groups, each group is asked to master one of the 4 cycles (Water, Nitrogen, Phosphorous and Carbon Cycle) using text. Then groups are broken up and reformed so members are able to share knowledge of information gathered to complete cycles of		Obtaining, Evaluating and Communicating Information	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand
Elaborate: How will students apply their learning and develop a more sophisticated understanding of the concept/topic?	Cycles of Matter Activity completed in small groups of Carbon Cycle, Nitrogen Cycle, Water Cycle and Phosphorous Cycle experts.	Cycles of Matter Activity: <u>http://sr2.k12.mo.us/hoover/</u> <u>Ch.%2013/cyclesmatteracti</u> <u>vity09.pdf</u>		<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
Extend: How will students deepen their conceptual understanding through use in new context?	What cycle do you believe is most important for the survival of producers? Which is the most important for consumer survival? Provide a full explanation citing evidence from the textbook and cycles of matter activity.		Engage in Argument from Evidence		
		Lesson Pace	& Sequence		
Lesson Title/Number: Photosynt	hesis Intro	Learning Objective(s): All learne produce food, describe the role of of Photosynthesis.	rs will be able to explain where plan ATP in cellular activities and investig	ts get the energy they need to gate the factors that affect the rate	Lesson Duration: 120 minutes
Learning Cycle	Learning Activities	Resources/Materials	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
What lesson elements will support students' progress towards mastery of the learning objectives(s)? *Elements do not have to be in conducted in sequence.	What specific learning experiences will support ALL students' progress towards mastery of the learning objective(s)?	What curricular resources/materials are available to facilitate the implementation of the learning activities?	What specific practices do students need to use in order to progress towards mastery of the learning objective(s)?	What core ideas do students need to understand in order to progress towards mastery of the learning objective(s)?	What crosscutting concepts will enrich students' application of practices and their understanding of core ideas?
Elicit: How will you access students' prior knowledge?	Where does the energy for primary producers come from?				

Explain: How will you help students connect their exploration to the concept/topic under investigation?	Intro to Photosynthesis Presentation/Discussion Students aim to answer individually by reading text. Where do plants get the energy they need to produce food? What is the role of ATP in cellular activities? Autotrophs vs. Heterotrophs review Intro to ATP:3ATP(charged battery) ADP (uncharged battery)	 Miller and Levine Chapter 8 section 8-1 	Obtaining, Evaluating and Communicating Information	PS3.D:Energy in Chemical Processes	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
Elaborate: How will students apply their learning and develop a more sophisticated understanding of the concept/topic?	Students will engage in a lab to answer the Essential Question: What factors affect the rate of photosynthesis? Students will be asked to develop hypothesis on 3 factors that affect the rate of photosynthesis. Students will design a lab to test the 3 factors and use data provided by teacher on the affects of :co2, heat, light, water, oxygen etc. on photosynthesis to complete results and conclusion, evaluate their hypothesis and clear up misconceptions		Planning and Carrying out Investigations, Analyzing and Interpreting Data, Obtaining, Evaluating and Communicating Information	PS3.D:Energy in Chemical Processes	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems
Extend: How will students deepen their conceptual understanding through use in new context?	What factor had the most effect on the rate of Photosynthesis and which had the least affect. Use evidence from the text and lab investigation to explain the possible cause of the different effects		Engage in Argument from Evidence		
Lesson Title/Number: Photosynt	hesis I	Lesson Pace Learning Objective(s): All learned describe the role of light, chloroph	& Sequence ers will be able to state the overall equivalent of the overall equivalent of the state the overall equivalent of the state of the stat	quation of for photosynthesis, ident reactions.	Lesson Duration: 80 minutes

Learning Cycle What lesson elements will support students' progress towards mastery of the learning objectives(s)? *Elements do not have to be in conducted in sequence.	Learning Activities What specific learning experiences will support ALL students' progress towards mastery of the learning objective(s)?	Resources/Materials What curricular resources/materials are available to facilitate the implementation of the learning activities?	Science and Engineering Practices What specific practices do students need to use in order to progress towards mastery of the learning objective(s)?	Disciplinary Core Ideas What core ideas do students need to understand in order to progress towards mastery of the learning objective(s)?	Crosscutting Concepts What crosscutting concepts will enrich students' application of practices and their understanding of core ideas?
Elicit: How will you access students' prior knowledge?	Think/Pair/Share: Why are plants at the bottom of the energy pyramid?				
Engage: How will you capture students' interest and get students' minds focused on the concept/topic?	Class discussion on answers to Think/Pair/Share				
Explore: What hands- on/minds-on common experience(s) will you provide for students?	Create a poster describing the process of photosynthesis including reactants and products. Make sure to highlight the factors that have the most effect on the rate.			<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
Explain: How will you help students connect their exploration to the concept/topic under investigation?	Review Photosynthesis equation: In small groups students will read text and identify 5 vocabulary terms needed to describe the light dependent reactions and explain the relevance of each term to the process using small white boards/poster paper.		Obtaining, Evaluating and Communicating Evidence	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
Elaborate: How will students apply their learning and develop a more sophisticated understanding of the concept/topic?	Create a tally of the vocabulary words identified by students and lead class discussion of relevance and use of vocabulary words in describing the light dependent reactions. Clear up misconceptions.				

Extend: How will students deepen their conceptual understanding through use in new context?	Exit ticket: Students will use the five terms individually to answer the question: What is the significance of the light dependent reaction to life on earth.				
		Lesson Pace	& Sequence		
Lesson Title/Number: Photosynt	hesis II	Learning Objective(s): All learner	Lesson Duration: 80 minutes		
Learning Cycle	Learning Activities	Resources/Materials	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
What lesson elements will support students' progress towards mastery of the learning objectives(s)?	What specific learning experiences will support ALL students' progress towards mastery of the learning objective(s)?	What curricular resources/materials are available to facilitate the implementation of the learning activities?	What specific practices do students need to use in order to progress towards mastery of the learning objective(s)?	What core ideas do students need to understand in order to progress towards mastery of the learning objective(s)?	What crosscutting concepts will enrich students' application of practices and their understanding of core ideas?
*Elements do not have to be in conducted in sequence.			3 • 1 • 1		
Elicit: How will you access students' prior knowledge?	What is the difference between the terms dependent and independent? Give an example of each term.				
Engage: How will you capture students' interest and get students' minds focused on the concept/topic?	Class discussion focused on meaning of light dependent and light independent.				
Explore: What hands- on/minds-on common experience(s) will you provide for students?	What is the purpose of the light independent reaction and where does the energy to run the light independent reactions/Calvin Cycle come from? Students are to complete CLAIM-EVIDENCE- WARRANT using evidence from text to answer question		Engaging in Argument from Evidence	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.

Explain: How will you help students connect their exploration to the concept/topic under investigation? Elaborate: How will students apply their learning and develop a more sophisticated understanding of the concept/topic? Extend: How will students deepen their conceptual understanding through use in	Review/Discussion of Calvin Cycle: Students will aim to summarize the Calvin Cycle and state the molecules that enter and exit it. Students are put into small groups and provided with white poster paper and colored markers to create large Venn diagrams. They are to compare and contrast the light dependent and independent reactions of photosynthesis using visuals and key vocabulary and present to the class. The class will vote on the best representation and explanation. Name at least 2 ideas that were included in the Venn diagrams of other groups that you didn't think		Obtaining, Evaluating and Communicating Information	LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems
new context?	about and explain why that information is important in understanding Photosynthesis				
	1	Lesson Pace	& Sequence		
Lesson Title/Number: Cellular R	espiration Intro	Learning Objective(s): All learned process of cellular respiration.	rs will be able to explain how living t	hings release energy through the	Lesson Duration: 120 minutes
Learning Cycle	Learning Activities	Resources/Materials	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
What lesson elements will support students' progress towards mastery of the learning objectives(s)? *Elements do not have to be in conducted in sequence.	What specific learning experiences will support ALL students' progress towards mastery of the learning objective(s)?	What curricular resources/materials are available to facilitate the implementation of the learning activities?	What specific practices do students need to use in order to progress towards mastery of the learning objective(s)?	What core ideas do students need to understand in order to progress towards mastery of the learning objective(s)?	What crosscutting concepts will enrich students' application of practices and their understanding of core ideas?
Elicit: How will you access students' prior knowledge?	How do living things release energy? List of answers written on board				

Engage: How will you capture students' interest and get students' minds focused on the concept/topic? Explore: What hands- on/minds-on common experience(s) will you provide for students?	Students will complete Inquiry Activity How do living things release energy? In pairs/ small groups: Students will create a table and evaluate 5 items including themselves on: activities, energy source and energy release. Questions: Was it easier to describe how living things use energy or how nonliving things use energy? What is the most common energy source for living things? How do you thin living things release the energy they need	•	Miller and Levine Chapter 9 page 220	Analyzing and Interpreting Data	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems
Explain: How will you help students connect their exploration to the concept/topic under investigation?	Presentation/Discussion on Cellular Respiration with questions embedded, Students should be able to answer individually: What is cellular respiration? What happens during the process of glycolysis? How is pyruvate formed? What is the difference between aerobic and anaerobic? What are the two main types of fermentation?				<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.

Evaluate: How will students demonstrate their mastery of the learning objective(s)?	In pairs students will complete Problem solving on page 224. Students will aim to define a problem, organize information, create a solution and present a plan to increase the bubbles of carbon dioxide while making bread.		Asking Questions and Defining Problems, Planning and Carrying Out Investigations, Constructing Explanations and Designing Solutions.	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
		Lesson Pace	& Sequence		
Lesson Title/Number: Cellular R	espiration vs. Photosynthesis	Learning Objective(s): All learner Electron Transport Chain. Compar	rs will be able to describe what happ e and contrast cellular respiration a	ens during the Krebs Cycle and nd photosynthesis.	Lesson Duration: 160 minutes
Learning Cycle	Learning Activities	Resources/Materials	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
What lesson elements will support students' progress towards mastery of the learning objectives(s)? *Elements do not have to be in conducted in sequence.	What specific learning experiences will support ALL students' progress towards mastery of the learning objective(s)?	What curricular resources/materials are available to facilitate the implementation of the learning activities?	What specific practices do students need to use in order to progress towards mastery of the learning objective(s)?	What core ideas do students need to understand in order to progress towards mastery of the learning objective(s)?	What crosscutting concepts will enrich students' application of practices and their understanding of core ideas?
Elicit: How will you access students' prior knowledge?	Why does it make sense that Cellular Respiration mostly takes place in the mitochondria?				
Explore: What hands- on/minds-on common experience(s) will you provide for students?	Quick Lab: How does exercise affect disposal wastes from cellular respiration? pg. 231 Students will use and observe bromthymol blue solution to demonstrate the increase production of carbon dioxide after exercise by blowing into tube with chemical before and after exercise and noting difference.	 Miller and Levine Chapter 9 pg. 231 	Planning and Carrying Out Investigations, Analyzing and Interpreting Data	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems

Explain: How will you help students connect their exploration to the concept/topic under investigation?	Present illustrations of Cellular Respiration pg. 222. Students will work in pairs to complete table in notebooks. Table will answer: Where does it happen, What molecules enter, What molecules exit and How many ATP molecules are produced for the processes of Glycolysis, Krebs Cycle and Electron Transport Chain.			Obtaining, Evaluating and Communicating Information	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.
Elaborate: How will students apply their learning and develop a more sophisticated understanding of the concept/topic?	Cellular Respiration in Yeast Lab	•	Cellular Respiration in Yeast Lab: http://www.paec.org/biology partnership/assets/february %2022/Cellular%20Respira tion%20Protocol%20- %20Balloon%20Lab.pdf	Developing and Using Models, Planning and Carrying Out Investigations, Analyzing and Interpreting Data, Obtaining, Evaluating and Communicating Information	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems.
Extend: How will students deepen their conceptual understanding through use in new context?	Create a concept map to compare and contrast the process of Photosynthesis and Cellular Respiration and their roles in the Carbon and Water cycle. Use the following vocabulary terms: carbon, carbon dioxide, oxygen ,hydrogen, water, glucose, energy, ATP, producer (s), consumer (s),human activity, decomposition, respiration, transpiration, evaporation, runoff, seepage, root uptake, deposition.			Obtaining, Evaluating, and Communicating Information	<u>LS2.B: Cycles of Matter and</u> Energy Transfer in Ecosystems	Energy and Matter: Flows, Cycles, and Conservation: tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior. Systems and System Models: A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems Patterns: Observed patterns in nature guide organization and classification and prompt questions about relationships and causes underlying them.